Design Parameters
Caption Calculation Symbol =ValueUnitReference OR Explanation
Design Parameters
0System of UnitsSys=##,##0.00
1Length Units L=##,##0.00milli meter
2Force Units F=##,##0.00Newton
3Concrete Strengthfck=25.00N/mm^2Cl: 5.2 of IS 13920
4Concrete safety factorgc=1.50Cl 36.4.1 of IS 456-2000
5Concrete Young's ModulusEc=25,000.00N/mm^2Cl 6.2.3.1 of IS 456-2000
6Steel Strengthfy=415.00N/mm^2Cl: 5.3 of IS 13920
7Steel safety factorgs=1.15Cl.36.4.1 of IS 456-2000
8Steel Young's ModulusEs=200,000.00N/mm^2Cl 5.6.3 of IS 456-2000
9Member LengthL=3,000.00mm
10Member BreadthDx=230.00mm
11Member DepthDy=300.00mm
12Clear Coverdc=40.00mm
13Min SteelAs=552.00
14Max SteelAs =2,760.00
15Min Steel %pMin=0.80%
16Max Steel %pMax=4.00%
17Weight of Concretewc=25.00kN/m^3
18Weight of Steelws=785.00kN/m^3
19Load Factorgl=1.50
20Min Main bar DiabDia=12.00mm
21Stirrup Steel Stressfys=250.00N/mm^2
22Stirrup bar Dias_bar=8.00mm
23Stirrup Spacingsv=450.00mm
24Min SpacingminSv=50.00mm
25Flange widthbf=0.00
26Span/d ratio limitLim L=10.00m
27Creep CoefficientCcft=1.60
28Beam TypebTy=##,##0.00
29Crack Width LimitWcrL=0.30mm
30Min Bar SpacingSpMin=20.00mm
31Max bar SpacingSpMax=150.00mm
***********************************************************=****************************
***********************************************************=****************************
DUCTILE DETAILING CHECKS
***********************************************************=****************************
***********************************************************=****************************
Axial Stress < 0.1 fck= 0.869565217391304=Acts as beam 7.1.1 IS 13920
Steel grade PASS=Cl: 5.3 of IS 13920
Concrete grade PASS=Cl: 5.2 of IS 13920
Min Column Dimension PASS=230mmCl: 7.1.2 of IS 13920
Short CS dim/normal dim=PASSPASSCl: 7.1.3 of IS 13920
Effective LengthConsider both ends fixedLeff=1738.75mmTable 28 IS 456-2000
L/D ratiolex/D Or ley/ble/d=7.55978260869565Table 28 IS 456-2000
Short ColumnLe/D < 12=TrueDesign as Short Column
Stress-Strain Curve 38.1 IS 456
Fe415=
Factored Load PuFrom analysisPu=190,410N
Factored moment about YYFrom analysisMuy=21,700,000NmmAlong XX -AXIS
Factored moment about XXFrom analysisMux=3,490,000NmmAlong YY -AXIS
Pu/fck*b*d factor=190410/ (25*300*230)δy=0.11
Mu/fck*b*d^2 factor=21700000/ (25*300*230^2)δx=0.055
***********************************************************=****************************
***********************************************************=****************************
CASE ALONG XX DIRECTION
***********************************************************=****************************
***********************************************************=****************************
Trail Steel Percentage = 0.8%
CURVE ~ 1
Main steel provided8-12ΦAs=905mm^2Largest bar dia 12
Steel % provided=100*905/(300*230)ρ=1.31%100 * As / (b * d)
Yield Concrete strain=(415/1.15/200000) + 0.002ε su =0.0038(fy / gs / Es) + 0.002
Balanced depth of NA=(0.0035/ (0.0035 +0.0038)) * (230-46)Xu=88
Factor k: NA/Depth=88/230k=0.38Xu/d
Parabolic depth=0.002 * 88/ 0.0035 Xp=50.29mmRectangular depth Xr = Xu - Xp
CompressionXu/dC=238,643=((0.67 /1.5)*25*88*300)-((0.67 /1.5)*25*50.29/3*300)
Compression factor k1=238,643/ (25*88*300)k1=0.36Compression/(fck*b*Xu)
CG from compr edgek2=0.416 37.1c IS 456 clause =(88-(((0.67/1.5)*25*88*300*(88/2)-((0.67/1.5) *25*300*50.29^ 2 /12))/(0.36*25*88*300))) /88
When Axial Force = 0
Compression=3*113*(140-11 )=43,731NLvl= 46||ε1=0.00070||fs=140
Moment about Centroid=43731* (230/ 2 -46)=3,017,439Nmm
Tension=2*113*(358-11 )=78,422NLvl= 115||ε2=0.00350||fs=358
Moment about Centroid=78422* (115 -115)=000Nmm
Tension=3*113*(361-11 )=118,650NLvl= 184||ε3=0.00770||fs=361
Moment about Centroid=118650* (115 -184)=-8,186,850Nmm
Force due to fck=0.36*25*300*0.25*230Fc=155,250N0.36 * fck * b * Xu
Moment due to fck=155250*(115-0.416*0.25*230)Mc=14,140,170NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.06
Y_Intercept=25344459/ (25*300*230^ 2)δy=0
Tension Failure Xu =0.35D
Compression=3*113*(294-11 )=95,937NLvl= 46||ε1=0.00150||fs=294
Moment about Centroid=95937* (230/ 2 -46)=6,619,653Nmm
Tension=2*113*(294-11 )=63,958NLvl= 115||ε2=0.00150||fs=294
Moment about Centroid=63958* (115 -115)=000Nmm
Tension=3*113*(361-11 )=118,650NLvl= 184||ε3=0.00450||fs=361
Moment about Centroid=118650* (115 -184)=-8,186,850Nmm
Force due to fck=0.36*25*300*0.35*230Fc=217,350N0.36 * fck * b * Xu
Moment due to fck=217350*(115-0.416*0.35*230)Mc=17,716,633NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.08
Y_Intercept=32523136/ (25*300*230^ 2)δy=0.08
Balanced Failure Xu =0.38D
Compression=3*113*(308-11 )=100,683NLvl= 46||ε1=0.00166||fs=308
Moment about Centroid=100683* (230/ 2 -46)=6,947,127Nmm
Tension=2*113*(221-11 )=47,460NLvl= 115||ε2=0.00111||fs=221
Moment about Centroid=47460* (115 -115)=000Nmm
Tension=3*113*(361-11 )=118,650NLvl= 184||ε3=0.00387||fs=361
Moment about Centroid=118650* (115 -184)=-8,186,850Nmm
Force due to fck=0.36*25*300*0.38*230Fc=235,980N0.36 * fck * b * Xu
Moment due to fck=235980*(115-0.416*0.38*230)Mc=18,557,845NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.08
Y_Intercept=33691822/ (25*300*230^ 2)δy=0.1
Compression Failure Xu =0.5D
Compression=3*113*(331-11 )=108,480NLvl= 46||ε1=0.00210||fs=331
Moment about Centroid=108480* (230/ 2 -46)=7,485,120Nmm
Tension=2*113*(0-11 )=-2,486NLvl= 115||ε2=0.00000||fs=0
Moment about Centroid=-2486* (115 -115)=000Nmm
Tension=3*113*(331-11 )=108,480NLvl= 184||ε3=0.00210||fs=331
Moment about Centroid=108480* (115 -184)=-7,485,120Nmm
Force due to fck=0.36*25*300*0.5*230Fc=310,500N0.36 * fck * b * Xu
Moment due to fck=310500*(115-0.416*0.5*230)Mc=20,853,180NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.09
Y_Intercept=35823420/ (25*300*230^ 2)δy=0.18
Compression Failure Xu =0.75D
Compression=3*113*(347-11 )=113,904NLvl= 46||ε1=0.00257||fs=347
Moment about Centroid=113904* (230/ 2 -46)=7,859,376Nmm
Compression=2*113*(233-11 )=50,172NLvl= 115||ε2=0.00117||fs=233
Moment about Centroid=50172* (230/ 2 -115)=000Nmm
Tension=3*113*(47-11 )=12,204NLvl= 184||ε3=0.00023||fs=47
Moment about Centroid=12204* (115 -184)=-842,076Nmm
Force due to fck=0.36*25*300*0.75*230Fc=465,750N0.36 * fck * b * Xu
Moment due to fck=465750*(115-0.416*0.75*230)Mc=20,139,030NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.07
Y_Intercept=28840482/ (25*300*230^ 2)δy=0.36
Compression Failure Xu =0.8D
Compression=3*113*(348-11 )=114,243NLvl= 46||ε1=0.00262||fs=348
Moment about Centroid=114243* (230/ 2 -46)=7,882,767Nmm
Compression=2*113*(262-11 )=56,726NLvl= 115||ε2=0.00131||fs=262
Moment about Centroid=56726* (230/ 2 -115)=000Nmm
Tension=3*113*(0-11 )=-3,729NLvl= 184||ε3=0.00000||fs=0
Moment about Centroid=-3729* (115 -184)=257,301Nmm
Force due to fck=0.36*25*300*0.8*230Fc=496,800N0.36 * fck * b * Xu
Moment due to fck=496800*(115-0.416*0.8*230)Mc=19,104,941NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.07
Y_Intercept=26730407/ (25*300*230^ 2)δy=0.39
Compression Failure Xu =1D
Compression=3*113*(352-11 )=115,599NLvl= 46||ε1=0.00280||fs=352
Moment about Centroid=115599* (230/ 2 -46)=7,976,331Nmm
Compression=2*113*(314-11 )=68,478NLvl= 115||ε2=0.00175||fs=314
Moment about Centroid=68478* (230/ 2 -115)=000Nmm
Compression=3*113*(140-11 )=43,731NLvl= 184||ε3=0.00070||fs=140
Moment about Centroid=43731* (230/ 2 -184)=-3,017,439Nmm
Force due to fck=0.36*25*300*1*230Fc=621,000N0.36 * fck * b * Xu
Moment due to fck=621000*(115-0.416*1*230)Mc=11,997,720NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.04
Y_Intercept=16956612/ (25*300*230^ 2)δy=0.49
Pure Compression Xu = ∞
fscStress-strain curve (ε=0.002)fsc=328N/mm^2
Asc compression side=1.31/ 100 *300*230Asc=904mm^2
Pu= 0.446 *25*300*230+904* (328- 0.446 *25)Pu=1,055,782N
X_Interceptδx=0
Y_Intercept=1055782/ (25*300*230)δy=0.612
Mu/fck*b*d^2 factorfor p% = 1.31δt=0.081Iteration until δt > 0.055
***********************************************************=****************************
****SUCCEEDED*********SUCCEEDED**********=****************************
TRAILS END with Steel = 1.31%
RESULTS of PASSED Steel = 1.31%
CURVE ~ 1
Main steel provided8-12ΦAs=905mm^2Largest bar dia 12
Steel % provided=100*905/(300*230)ρ=1.31%100 * As / (b * d)
Yield Concrete strain=(415/1.15/200000) + 0.002ε su =0.0038(fy / gs / Es) + 0.002
Balanced depth of NA=(0.0035/ (0.0035 +0.0038)) * (230-46)Xu=88
Factor k: NA/Depth=88/230k=0.38Xu/d
Parabolic depth=0.002 * 88/ 0.0035 Xp=50.29mmRectangular depth Xr = Xu - Xp
CompressionXu/dC=238,643=((0.67 /1.5)*25*88*300)-((0.67 /1.5)*25*50.29/3*300)
Compression factor k1=238,643/ (25*88*300)k1=0.36Compression/(fck*b*Xu)
CG from compr edgek2=0.416 37.1c IS 456 clause =(88-(((0.67/1.5)*25*88*300*(88/2)-((0.67/1.5) *25*300*50.29^ 2 /12))/(0.36*25*88*300))) /88
fck and fy Yield 1.31=
When Axial Force = 0
About ZZ k=0.25 with p =1.31=
Compression=3*113*(140-11 )=43,731NLvl= 46||ε1=0.00070||fs=140
Moment about Centroid=43731* (230/ 2 -46)=3,017,439Nmm
Tension=2*113*(358-11 )=78,422NLvl= 115||ε2=0.00350||fs=358
Moment about Centroid=78422* (115 -115)=000Nmm
Tension=3*113*(361-11 )=118,650NLvl= 184||ε3=0.00770||fs=361
Moment about Centroid=118650* (115 -184)=-8,186,850Nmm
Force due to fck=0.36*25*300*0.25*230Fc=155,250N0.36 * fck * b * Xu
Moment due to fck=155250*(115-0.416*0.25*230)Mc=14,140,170NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.06
Y_Intercept=25344459/ (25*300*230^ 2)δy=0
Tension Failure Xu =0.35D
About ZZ k=0.35 with p =1.31=
Compression=3*113*(294-11 )=95,937NLvl= 46||ε1=0.00150||fs=294
Moment about Centroid=95937* (230/ 2 -46)=6,619,653Nmm
Tension=2*113*(294-11 )=63,958NLvl= 115||ε2=0.00150||fs=294
Moment about Centroid=63958* (115 -115)=000Nmm
Tension=3*113*(361-11 )=118,650NLvl= 184||ε3=0.00450||fs=361
Moment about Centroid=118650* (115 -184)=-8,186,850Nmm
Force due to fck=0.36*25*300*0.35*230Fc=217,350N0.36 * fck * b * Xu
Moment due to fck=217350*(115-0.416*0.35*230)Mc=17,716,633NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.08
Y_Intercept=32523136/ (25*300*230^ 2)δy=0.08
Balanced Failure Xu =0.38D
About ZZ k=0.38 with p =1.31=
Compression=3*113*(308-11 )=100,683NLvl= 46||ε1=0.00166||fs=308
Moment about Centroid=100683* (230/ 2 -46)=6,947,127Nmm
Tension=2*113*(221-11 )=47,460NLvl= 115||ε2=0.00111||fs=221
Moment about Centroid=47460* (115 -115)=000Nmm
Tension=3*113*(361-11 )=118,650NLvl= 184||ε3=0.00387||fs=361
Moment about Centroid=118650* (115 -184)=-8,186,850Nmm
Force due to fck=0.36*25*300*0.38*230Fc=235,980N0.36 * fck * b * Xu
Moment due to fck=235980*(115-0.416*0.38*230)Mc=18,557,845NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.08
Y_Intercept=33691822/ (25*300*230^ 2)δy=0.1
Compression Failure Xu =0.5D
About ZZ k=0.5 with p =1.31=
Compression=3*113*(331-11 )=108,480NLvl= 46||ε1=0.00210||fs=331
Moment about Centroid=108480* (230/ 2 -46)=7,485,120Nmm
Tension=2*113*(0-11 )=-2,486NLvl= 115||ε2=0.00000||fs=0
Moment about Centroid=-2486* (115 -115)=000Nmm
Tension=3*113*(331-11 )=108,480NLvl= 184||ε3=0.00210||fs=331
Moment about Centroid=108480* (115 -184)=-7,485,120Nmm
Force due to fck=0.36*25*300*0.5*230Fc=310,500N0.36 * fck * b * Xu
Moment due to fck=310500*(115-0.416*0.5*230)Mc=20,853,180NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.09
Y_Intercept=35823420/ (25*300*230^ 2)δy=0.18
Compression Failure Xu =0.75D
About ZZ k=0.75 with p =1.31=
Compression=3*113*(347-11 )=113,904NLvl= 46||ε1=0.00257||fs=347
Moment about Centroid=113904* (230/ 2 -46)=7,859,376Nmm
Compression=2*113*(233-11 )=50,172NLvl= 115||ε2=0.00117||fs=233
Moment about Centroid=50172* (230/ 2 -115)=000Nmm
Tension=3*113*(47-11 )=12,204NLvl= 184||ε3=0.00023||fs=47
Moment about Centroid=12204* (115 -184)=-842,076Nmm
Force due to fck=0.36*25*300*0.75*230Fc=465,750N0.36 * fck * b * Xu
Moment due to fck=465750*(115-0.416*0.75*230)Mc=20,139,030NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.07
Y_Intercept=28840482/ (25*300*230^ 2)δy=0.36
Compression Failure Xu =0.8D
About ZZ k=0.8 with p =1.31=
Compression=3*113*(348-11 )=114,243NLvl= 46||ε1=0.00262||fs=348
Moment about Centroid=114243* (230/ 2 -46)=7,882,767Nmm
Compression=2*113*(262-11 )=56,726NLvl= 115||ε2=0.00131||fs=262
Moment about Centroid=56726* (230/ 2 -115)=000Nmm
Tension=3*113*(0-11 )=-3,729NLvl= 184||ε3=0.00000||fs=0
Moment about Centroid=-3729* (115 -184)=257,301Nmm
Force due to fck=0.36*25*300*0.8*230Fc=496,800N0.36 * fck * b * Xu
Moment due to fck=496800*(115-0.416*0.8*230)Mc=19,104,941NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.07
Y_Intercept=26730407/ (25*300*230^ 2)δy=0.39
Compression Failure Xu =1D
About ZZ k=1 with p =1.31=
Compression=3*113*(352-11 )=115,599NLvl= 46||ε1=0.00280||fs=352
Moment about Centroid=115599* (230/ 2 -46)=7,976,331Nmm
Compression=2*113*(314-11 )=68,478NLvl= 115||ε2=0.00175||fs=314
Moment about Centroid=68478* (230/ 2 -115)=000Nmm
Compression=3*113*(140-11 )=43,731NLvl= 184||ε3=0.00070||fs=140
Moment about Centroid=43731* (230/ 2 -184)=-3,017,439Nmm
Force due to fck=0.36*25*300*1*230Fc=621,000N0.36 * fck * b * Xu
Moment due to fck=621000*(115-0.416*1*230)Mc=11,997,720NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.04
Y_Intercept=16956612/ (25*300*230^ 2)δy=0.49
Pure Compression Xu = ∞
fscStress-strain curve (ε=0.002)fsc=328N/mm^2
Asc compression side=1.31/ 100 *300*230Asc=904mm^2
Pu= 0.446 *25*300*230+904* (328- 0.446 *25)Pu=1,055,782N
X_Interceptδx=0
Y_Intercept=1055782/ (25*300*230)δy=0.612
Interaction-CURVES
ID About ZZ=Curve: 1~ p/fck = 0.05~ d`/D = 0.2
^^^8-12Φ with p% =1.31
___________________________________________=_________________________________
Pu/fck*b*d factor=190410/ (25*300*230)δy=0.11
Mu/fck*b*d^2 factor=3490000/ (25*230*300^2)δx=0.007
***********************************************************=****************************
***********************************************************=****************************
CASE ALONG YY DIRECTION
***********************************************************=****************************
***********************************************************=****************************
Trail Steel Percentage = 0.8%
CURVE ~ 1
Main steel provided8-12ΦAs=905mm^2Largest bar dia 12
Steel % provided=100*905/(230*300)ρ=1.31%100 * As / (b * d)
Yield Concrete strain=(415/1.15/200000) + 0.002ε su =0.0038(fy / gs / Es) + 0.002
Balanced depth of NA=(0.0035/ (0.0035 +0.0038)) * (300-46)Xu=122
Factor k: NA/Depth=122/300k=0.41Xu/d
Parabolic depth=0.002 * 122/ 0.0035 Xp=69.71mmRectangular depth Xr = Xu - Xp
CompressionXu/dC=253,657=((0.67 /1.5)*25*122*230)-((0.67 /1.5)*25*69.71/3*230)
Compression factor k1=253,657/ (25*122*230)k1=0.36Compression/(fck*b*Xu)
CG from compr edgek2=0.416 37.1c IS 456 clause =(122-(((0.67/1.5)*25*122*230*(122/2)-((0.67/1.5) *25*230*69.71^ 2 /12))/(0.36*25*122*230))) /122
When Axial Force = 0
Compression=3*113*(163-11 )=51,528NLvl= 46||ε1=0.00082||fs=163
Moment about Centroid=51528* (300/ 2 -46)=5,358,912Nmm
Tension=2*113*(361-11 )=79,100NLvl= 150||ε2=0.00525||fs=361
Moment about Centroid=79100* (150 -150)=000Nmm
Tension=3*113*(361-11 )=118,650NLvl= 254||ε3=0.01132||fs=361
Moment about Centroid=118650* (150 -254)=-12,339,600Nmm
Force due to fck=0.36*25*230*0.2*300Fc=124,200N0.36 * fck * b * Xu
Moment due to fck=124200*(150-0.416*0.2*300)Mc=15,529,968NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.06
Y_Intercept=33228480/ (25*230*300^ 2)δy=-0.01
Tension Failure Xu =0.35D
Compression=3*113*(326-11 )=106,785NLvl= 46||ε1=0.00197||fs=326
Moment about Centroid=106785* (300/ 2 -46)=11,105,640Nmm
Tension=2*113*(294-11 )=63,958NLvl= 150||ε2=0.00150||fs=294
Moment about Centroid=63958* (150 -150)=000Nmm
Tension=3*113*(361-11 )=118,650NLvl= 254||ε3=0.00497||fs=361
Moment about Centroid=118650* (150 -254)=-12,339,600Nmm
Force due to fck=0.36*25*230*0.35*300Fc=217,350N0.36 * fck * b * Xu
Moment due to fck=217350*(150-0.416*0.35*300)Mc=23,108,652NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.09
Y_Intercept=46553892/ (25*230*300^ 2)δy=0.08
Balanced Failure Xu =0.41D
Compression=3*113*(335-11 )=109,836NLvl= 46||ε1=0.00219||fs=335
Moment about Centroid=109836* (300/ 2 -46)=11,422,944Nmm
Tension=2*113*(154-11 )=32,318NLvl= 150||ε2=0.00077||fs=154
Moment about Centroid=32318* (150 -150)=000Nmm
Tension=3*113*(360-11 )=118,311NLvl= 254||ε3=0.00373||fs=360
Moment about Centroid=118311* (150 -254)=-12,304,344Nmm
Force due to fck=0.36*25*230*0.41*300Fc=254,610N0.36 * fck * b * Xu
Moment due to fck=254610*(150-0.416*0.41*300)Mc=25,163,616NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.09
Y_Intercept=48890904/ (25*230*300^ 2)δy=0.12
Compression Failure Xu =0.5D
Compression=3*113*(343-11 )=112,548NLvl= 46||ε1=0.00243||fs=343
Moment about Centroid=112548* (300/ 2 -46)=11,704,992Nmm
Tension=2*113*(0-11 )=-2,486NLvl= 150||ε2=0.00000||fs=0
Moment about Centroid=-2486* (150 -150)=000Nmm
Tension=3*113*(343-11 )=112,548NLvl= 254||ε3=0.00243||fs=343
Moment about Centroid=112548* (150 -254)=-11,704,992Nmm
Force due to fck=0.36*25*230*0.5*300Fc=310,500N0.36 * fck * b * Xu
Moment due to fck=310500*(150-0.416*0.5*300)Mc=27,199,800NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.1
Y_Intercept=50609784/ (25*230*300^ 2)δy=0.18
Compression Failure Xu =0.75D
Compression=3*113*(352-11 )=115,599NLvl= 46||ε1=0.00278||fs=352
Moment about Centroid=115599* (300/ 2 -46)=12,022,296Nmm
Compression=2*113*(233-11 )=50,172NLvl= 150||ε2=0.00117||fs=233
Moment about Centroid=50172* (300/ 2 -150)=000Nmm
Tension=3*113*(90-11 )=26,781NLvl= 254||ε3=0.00045||fs=90
Moment about Centroid=26781* (150 -254)=-2,785,224Nmm
Force due to fck=0.36*25*230*0.75*300Fc=465,750N0.36 * fck * b * Xu
Moment due to fck=465750*(150-0.416*0.75*300)Mc=26,268,300NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.08
Y_Intercept=41075820/ (25*230*300^ 2)δy=0.35
Compression Failure Xu =0.85D
Compression=3*113*(353-11 )=115,938NLvl= 46||ε1=0.00287||fs=353
Moment about Centroid=115938* (300/ 2 -46)=12,057,552Nmm
Compression=2*113*(288-11 )=62,602NLvl= 150||ε2=0.00144||fs=288
Moment about Centroid=62602* (300/ 2 -150)=000Nmm
Compression=3*113*(3-11 )=-2,712NLvl= 254||ε3=0.00001||fs=3
Moment about Centroid=-2712* (300/ 2 -254)=282,048Nmm
Force due to fck=0.36*25*230*0.85*300Fc=527,850N0.36 * fck * b * Xu
Moment due to fck=527850*(150-0.416*0.85*300)Mc=23,183,172NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.07
Y_Intercept=35522772/ (25*230*300^ 2)δy=0.41
Compression Failure Xu =1D
Compression=3*113*(354-11 )=116,277NLvl= 46||ε1=0.00296||fs=354
Moment about Centroid=116277* (300/ 2 -46)=12,092,808Nmm
Compression=2*113*(314-11 )=68,478NLvl= 150||ε2=0.00175||fs=314
Moment about Centroid=68478* (300/ 2 -150)=000Nmm
Compression=3*113*(107-11 )=32,544NLvl= 254||ε3=0.00054||fs=107
Moment about Centroid=32544* (300/ 2 -254)=-3,384,576Nmm
Force due to fck=0.36*25*230*1*300Fc=621,000N0.36 * fck * b * Xu
Moment due to fck=621000*(150-0.416*1*300)Mc=15,649,200NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.05
Y_Intercept=24357432/ (25*230*300^ 2)δy=0.49
Pure Compression Xu = ∞
fscStress-strain curve (ε=0.002)fsc=328N/mm^2
Asc compression side=1.31/ 100 *230*300Asc=904mm^2
Pu= 0.446 *25*230*300+904* (328- 0.446 *25)Pu=1,055,782N
X_Interceptδx=0
Y_Intercept=1055782/ (25*230*300)δy=0.612
Mu/fck*b*d^2 factorfor p% = 1.31δt=0.09Iteration until δt > 0.007
***********************************************************=****************************
****SUCCEEDED*********SUCCEEDED**********=****************************
TRAILS END with Steel = 1.31%
RESULTS of PASSED Steel = 1.31%
CURVE ~ 1
Main steel provided8-12ΦAs=905mm^2Largest bar dia 12
Steel % provided=100*905/(230*300)ρ=1.31%100 * As / (b * d)
Yield Concrete strain=(415/1.15/200000) + 0.002ε su =0.0038(fy / gs / Es) + 0.002
Balanced depth of NA=(0.0035/ (0.0035 +0.0038)) * (300-46)Xu=122
Factor k: NA/Depth=122/300k=0.41Xu/d
Parabolic depth=0.002 * 122/ 0.0035 Xp=69.71mmRectangular depth Xr = Xu - Xp
CompressionXu/dC=253,657=((0.67 /1.5)*25*122*230)-((0.67 /1.5)*25*69.71/3*230)
Compression factor k1=253,657/ (25*122*230)k1=0.36Compression/(fck*b*Xu)
CG from compr edgek2=0.416 37.1c IS 456 clause =(122-(((0.67/1.5)*25*122*230*(122/2)-((0.67/1.5) *25*230*69.71^ 2 /12))/(0.36*25*122*230))) /122
fck and fy Yield 1.31=
When Axial Force = 0
About XX k=0.2 with p =1.31=
Compression=3*113*(163-11 )=51,528NLvl= 46||ε1=0.00082||fs=163
Moment about Centroid=51528* (300/ 2 -46)=5,358,912Nmm
Tension=2*113*(361-11 )=79,100NLvl= 150||ε2=0.00525||fs=361
Moment about Centroid=79100* (150 -150)=000Nmm
Tension=3*113*(361-11 )=118,650NLvl= 254||ε3=0.01132||fs=361
Moment about Centroid=118650* (150 -254)=-12,339,600Nmm
Force due to fck=0.36*25*230*0.2*300Fc=124,200N0.36 * fck * b * Xu
Moment due to fck=124200*(150-0.416*0.2*300)Mc=15,529,968NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.06
Y_Intercept=33228480/ (25*230*300^ 2)δy=-0.01
Tension Failure Xu =0.35D
About XX k=0.35 with p =1.31=
Compression=3*113*(326-11 )=106,785NLvl= 46||ε1=0.00197||fs=326
Moment about Centroid=106785* (300/ 2 -46)=11,105,640Nmm
Tension=2*113*(294-11 )=63,958NLvl= 150||ε2=0.00150||fs=294
Moment about Centroid=63958* (150 -150)=000Nmm
Tension=3*113*(361-11 )=118,650NLvl= 254||ε3=0.00497||fs=361
Moment about Centroid=118650* (150 -254)=-12,339,600Nmm
Force due to fck=0.36*25*230*0.35*300Fc=217,350N0.36 * fck * b * Xu
Moment due to fck=217350*(150-0.416*0.35*300)Mc=23,108,652NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.09
Y_Intercept=46553892/ (25*230*300^ 2)δy=0.08
Balanced Failure Xu =0.41D
About XX k=0.41 with p =1.31=
Compression=3*113*(335-11 )=109,836NLvl= 46||ε1=0.00219||fs=335
Moment about Centroid=109836* (300/ 2 -46)=11,422,944Nmm
Tension=2*113*(154-11 )=32,318NLvl= 150||ε2=0.00077||fs=154
Moment about Centroid=32318* (150 -150)=000Nmm
Tension=3*113*(360-11 )=118,311NLvl= 254||ε3=0.00373||fs=360
Moment about Centroid=118311* (150 -254)=-12,304,344Nmm
Force due to fck=0.36*25*230*0.41*300Fc=254,610N0.36 * fck * b * Xu
Moment due to fck=254610*(150-0.416*0.41*300)Mc=25,163,616NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.09
Y_Intercept=48890904/ (25*230*300^ 2)δy=0.12
Compression Failure Xu =0.5D
About XX k=0.5 with p =1.31=
Compression=3*113*(343-11 )=112,548NLvl= 46||ε1=0.00243||fs=343
Moment about Centroid=112548* (300/ 2 -46)=11,704,992Nmm
Tension=2*113*(0-11 )=-2,486NLvl= 150||ε2=0.00000||fs=0
Moment about Centroid=-2486* (150 -150)=000Nmm
Tension=3*113*(343-11 )=112,548NLvl= 254||ε3=0.00243||fs=343
Moment about Centroid=112548* (150 -254)=-11,704,992Nmm
Force due to fck=0.36*25*230*0.5*300Fc=310,500N0.36 * fck * b * Xu
Moment due to fck=310500*(150-0.416*0.5*300)Mc=27,199,800NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.1
Y_Intercept=50609784/ (25*230*300^ 2)δy=0.18
Compression Failure Xu =0.75D
About XX k=0.75 with p =1.31=
Compression=3*113*(352-11 )=115,599NLvl= 46||ε1=0.00278||fs=352
Moment about Centroid=115599* (300/ 2 -46)=12,022,296Nmm
Compression=2*113*(233-11 )=50,172NLvl= 150||ε2=0.00117||fs=233
Moment about Centroid=50172* (300/ 2 -150)=000Nmm
Tension=3*113*(90-11 )=26,781NLvl= 254||ε3=0.00045||fs=90
Moment about Centroid=26781* (150 -254)=-2,785,224Nmm
Force due to fck=0.36*25*230*0.75*300Fc=465,750N0.36 * fck * b * Xu
Moment due to fck=465750*(150-0.416*0.75*300)Mc=26,268,300NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.08
Y_Intercept=41075820/ (25*230*300^ 2)δy=0.35
Compression Failure Xu =0.85D
About XX k=0.85 with p =1.31=
Compression=3*113*(353-11 )=115,938NLvl= 46||ε1=0.00287||fs=353
Moment about Centroid=115938* (300/ 2 -46)=12,057,552Nmm
Compression=2*113*(288-11 )=62,602NLvl= 150||ε2=0.00144||fs=288
Moment about Centroid=62602* (300/ 2 -150)=000Nmm
Compression=3*113*(3-11 )=-2,712NLvl= 254||ε3=0.00001||fs=3
Moment about Centroid=-2712* (300/ 2 -254)=282,048Nmm
Force due to fck=0.36*25*230*0.85*300Fc=527,850N0.36 * fck * b * Xu
Moment due to fck=527850*(150-0.416*0.85*300)Mc=23,183,172NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.07
Y_Intercept=35522772/ (25*230*300^ 2)δy=0.41
Compression Failure Xu =1D
About XX k=1 with p =1.31=
Compression=3*113*(354-11 )=116,277NLvl= 46||ε1=0.00296||fs=354
Moment about Centroid=116277* (300/ 2 -46)=12,092,808Nmm
Compression=2*113*(314-11 )=68,478NLvl= 150||ε2=0.00175||fs=314
Moment about Centroid=68478* (300/ 2 -150)=000Nmm
Compression=3*113*(107-11 )=32,544NLvl= 254||ε3=0.00054||fs=107
Moment about Centroid=32544* (300/ 2 -254)=-3,384,576Nmm
Force due to fck=0.36*25*230*1*300Fc=621,000N0.36 * fck * b * Xu
Moment due to fck=621000*(150-0.416*1*300)Mc=15,649,200NmmFc * (d / 2 - k2 * Xu
X_Interceptδx=0.05
Y_Intercept=24357432/ (25*230*300^ 2)δy=0.49
Pure Compression Xu = ∞
fscStress-strain curve (ε=0.002)fsc=328N/mm^2
Asc compression side=1.31/ 100 *230*300Asc=904mm^2
Pu= 0.446 *25*230*300+904* (328- 0.446 *25)Pu=1,055,782N
X_Interceptδx=0
Y_Intercept=1055782/ (25*230*300)δy=0.612
Interaction-CURVES
ID About XX=Curve: 1~ p/fck = 0.05~ d`/D = 0.15
^^^8-12Φ with p% =1.31
___________________________________________=_________________________________
WORST CASE of above
8-12Φ with p% =1.31
***********************************************************=****************************
***********************************************************=****************************
CHECKS ADEQUACY Other LCs
***********************************************************=****************************
***********************************************************=****************************
Forces along XX Direction
Accidental Eccentricity= Max(2675/500+230/ 30, 20)eMin=20mm25.4 IS 456-2000
Puz= 0.45 *68096.1*25+ 0.75 *903.9*415Puz=1,047,420N39.3 IS 456-2000
Pu/fck*b*d=182650/ (25*300*230)=0.11Pu/fck*b*d
Biaxial Coefficient=182650/1047420αx=0.17Pu/Puz
Biaxial Coefficient=If(0.17< 0.2, 1.0, If(0.17> 0.8, 2, (1.0 + (0.17- 0.2) / (0.8 - 0.2) * (2.0 - 1.0))))αn=139.6 IS 456-2000
Design Moment=If(19570000>182650*20,19570000,182650*20)Mux=19,570,000Nmm
Design Moment=If(4110000>182650*20,4110000,182650*20)Muy=4,110,000Nmm
Mux/fck*b*d^2=0.09Interpolated value
Uniaxial Moment Capacity=0.09*25*300*230^ 2Mux1=35,707,500Nmm
Uniaxial Moment Capacity=0.09*25*230*300^ 2Muy1=46,575,000Nmm
Biaxial Factor=(4110000/46575000) ^1+ (19570000/35707500) ^1=0.636(Mux / Mux1) ^ n + (Muy / Muy1) ^ n
Biaxial Bending Check=PASSSince < 1.0 As per 39.6 IS 456
Forces along YY Direction
Accidental Eccentricity= Max(2650/500+300/ 30, 20)eMin=20mm25.4 IS 456-2000
Puz= 0.45 *68096.1*25+ 0.75 *903.9*415Puz=1,047,420N39.3 IS 456-2000
Pu/fck*b*d=182650/ (25*230*300)=0.11Pu/fck*b*d
Biaxial Coefficient=182650/1047420αx=0.17Pu/Puz
Biaxial Coefficient=If(0.17< 0.2, 1.0, If(0.17> 0.8, 2, (1.0 + (0.17- 0.2) / (0.8 - 0.2) * (2.0 - 1.0))))αn=139.6 IS 456-2000
Design Moment=If(19570000>182650*20,19570000,182650*20)Mux=19,570,000Nmm
Design Moment=If(4110000>182650*20,4110000,182650*20)Muy=4,110,000Nmm
Mux/fck*b*d^2=0.09Interpolated value
Uniaxial Moment Capacity=0.09*25*230*300^ 2Mux1=46,575,000Nmm
Uniaxial Moment Capacity=0.09*25*300*230^ 2Muy1=35,707,500Nmm
Biaxial Factor=(4110000/35707500) ^1+ (19570000/46575000) ^1=0.535(Mux / Mux1) ^ n + (Muy / Muy1) ^ n
Biaxial Bending Check=PASSSince < 1.0 As per 39.6 IS 456
***********************************************************=****************************
***********************************************************=****************************
SHEAR STRENGTH
***********************************************************=****************************
***********************************************************=****************************
Given % of steelρ=1.31%Read τc from Table 19 of IS 456
beeta Constant= 0.8 * 25/ (6.89 * 1.31)beeta=2.216Constant8 * fck / (6.89 * pt)
Shear strength of concrete=(0.85 * Sqrt(0.8 *25)* (Sqrt(1 + 5 *2.216) - 1)) / (6 * 2.216)tc=0.708N/mm^20.85 * Sqrt(0.8 * fck * (Sqrt(1 + 5 * beeta) - 1)) / (6 * beeta)
Axial Factor ltd to 1.50= 1 + (3 *182650/ (68096*25))δ=1 On least load >> 40.2.2 IS 456
Factored tc=0.70778*1τc=0.708
Shear Strength >> XX= 0.708*300*(230-40-12/ 2)Vcx=39082 40.2.2 IS 456
Shear Strength >> YY= 0.708*230*(300-40-12/ 2)Vcy=41361 40.2.2 IS 456
Framing beam Jt:A>LEFT
Breadthb=230mm
Depthd=350mm
Steel % ρ=1.2%
Framing beam Jt:A>RIGHT
Breadthb=230mm
Depthd=300mm
Steel % ρ=1.15%
Framing beam Jt:A>FRONT
Breadthb=230mm
Depthd=400mm
Steel % ρ=1.3%
Framing beam Jt:A>BACK
Breadthb=230mm
Depthd=300mm
Steel % ρ=1.15%
Neutral Axis depth=(0.0035 / (0.0035 + 0.0038)) * (350-25-20/ 2)Xu=151mm
Parabolic depth=0.002 * 151/ 0.0035 Xp=86.29mmRectangular depth Xr = Xu - Xp
CompressionXu/dC=313,945=((0.67 /1.5)*25*151*230)-((0.67 /1.5)*25*86.29/3*230)
Compression factor k1=313,945/ (25*151*230)k1=0.36Compression/(fck*b*Xu)
CG from compr edgek2=0.413 37.1c IS 456 =(151-(((0.67/1.5)*25*151*230*(151/2)-((0.67/1.5) *25*230*86.29^ 2 /12))/(0.36*25*151*230))) /151
Steel % in LEFT BEAMpal=1.2given/read from databse
Moment Capacity LEFT BEAMMuL=97,764,314Nmmb * (d ^ 2) * ((fy / gs) * (pt / 100) * (1 - (k2 * (fy / gs) / (k1 * fck) * (pt / 100))))
Steel % in RIGHT BEAMpar=1.35given/read from databse
Moment Capacity RIGHT BEAMMuR=78,300,223Nmmb * (d ^ 2) * ((fy / gs) * (pt / 100) * (1 - (k2 * (fy / gs) / (k1 * fck) * (pt / 100))))
Factored SF by plastic hinge=1.4 * (97764314+78300223) /3000Vup=82,163N7.3.4 IS 13920:1993
Neutral Axis depth=(0.0035 / (0.0035 + 0.0038)) * (400-25-20/ 2)Xu=175mm
Parabolic depth=0.002 * 175/ 0.0035 Xp=100mmRectangular depth Xr = Xu - Xp
CompressionXu/dC=363,847=((0.67 /1.5)*25*175*230)-((0.67 /1.5)*25*100/3*230)
Compression factor k1=363,847/ (25*175*230)k1=0.36Compression/(fck*b*Xu)
CG from compr edgek2=0.413 37.1c IS 456 =(175-(((0.67/1.5)*25*175*230*(175/2)-((0.67/1.5) *25*230*100^ 2 /12))/(0.36*25*175*230))) /175
Steel % in LEFT BEAMpal=1.3given/read from databse
Moment Capacity LEFT BEAMMuL=135,474,278Nmmb * (d ^ 2) * ((fy / gs) * (pt / 100) * (1 - (k2 * (fy / gs) / (k1 * fck) * (pt / 100))))
Steel % in RIGHT BEAMpar=1.15given/read from databse
Moment Capacity RIGHT BEAMMuR=69,545,347Nmmb * (d ^ 2) * ((fy / gs) * (pt / 100) * (1 - (k2 * (fy / gs) / (k1 * fck) * (pt / 100))))
Factored SF by plastic hinge=1.4 * (135474278+69545347) /3000Vup=95,676N7.3.4 IS 13920:1993
Design SF >> XX= If(0>82163,0,82163)Vx=82163N 7.3.4; IS 13920: 1993
Design SF >> YY= If(0>95676,0,95676)Vy=82163N 7.3.4; IS 13920: 1993
Shear Along XX Dir
Balance Shear Strength >> XX=82163-39082Vs=43,081NVsx=Vx-Vcx
Area of 2 legs2*PI*d^2/4 Sv=101mm
Tie Spacing=0.87*250*101*194/43081Sv=99mm
Tie Legslegs=2nr
Shear Along YY Dir
Balance Shear Strength >> YY=95676-41361Vs=54,315NVsy=Vy-Vcy
Area of 2 legs2*PI*d^2/4 Sv=101mm
Tie Spacing=0.87*250*101*264/54315Sv=107mm
Tie Legslegs=2nr
Hoop SpacingLeast column dimension /2SvLim=115mmCl: 7.3.3 of IS 13920
Mid height ties8Φ@99mm C/C=
Hoop SpacingLeast of 100, D/4, B/4 Limit to 75 mmSv=75mmCl: 7.4.6 of IS 13920
Confining Hoops Critical LoMax of D, B, 1/6 Span, 450 mmLo=450mmCl: 7.4.1 of IS 13920
=(230-2*40-2*8)*(300-2*40-2*8)Ak=27336mm^2
Special confining rebar area=0.18 *75*115*25/*415*(68096/27336- 1)Ash=139mm^27.4.8 IS 13920
Adequacy8 mm adequateCheck=OK
Main steel provided8-12ΦAs=905mm^2Largest bar dia 12
Column TIES=